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 Marks 

 

Question 1                        (12 marks) Use a SEPARATE writing booklet. 

 

a) Solve for �: 
� + 2
� − 4 ≥ 3 3 

    

b) Evaluate  lim�→

10�

sin ��6 ��
 1 

    

c) 

 

The point � divides the interval joining �(4, 3) and �(−2, 5) externally in 

the ratio 1 ∶ 3. Find coordinates of �. 

2 

 

   

d) For what value of � is the expression 3�� + 20� + � divisible by � + 6? 1 

   

e) Expand !� − 1
2"

#
, express each term in its simplest form. 2 

     

f) Find $� (7 − 2��)&'�, using the substitution ( = 7 − 2�� 3 
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 Marks 

 

Question 2                        (12 marks) Use a SEPARATE writing booklet. 

 

a) For  *(�) = 3 cos-. �2  

 i) State the domain and the range 2 

 ii) Sketch *(�) 1 

    

b) Find 
'
'� (/&� cos 3�) 2 

    

c) Consider the parabola � = 60, 1 = 30 .  

 i) Express this parabola in cartesian form 1 

 ii) Find the gradient of the parabola at the point where 0 = −2 1 

 iii) Find the equation of the normal to the parabola at 0 = −2 2 

    

d) 

 

Find the size of the acute angle to the nearest minute between the graphs of 1 = 3� − 2 and 1 = �� − 4 at the point of intersection where � = 2 

3 
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 Marks 

 

Question 3                        (12 marks) Use a SEPARATE writing booklet. 

 

a) Given �1 = 2, evaluate $ �2
.

'1 to 4 significant figures. 2 

     

b) Let *(�) = sin � − ln �  

 i) Show that a root to *(�) = 0 lies between 2 and 2.5 1 

 

ii) 

 

 

Starting with a value of � = 2, use 1 application of Newton’s 

method to find a better approximation to this root of *(�) = 0, 

correct your answer to 3 decimal  places 

3 

 

 

    

c) 

 

How many 12 letter combinations can be made using the letters of the word 

SUBSTITUTION? 
1 

 

   

d) 

 
The polynomial 3�� + 5� − 4� − 2 = 0 has 3 roots, namely 4, 5 and 6. 

Find the values of: 
 

 i) 4 + 5 + 6 1 

 ii) 
1
4 +

1
5 +

1
6 2 

 iii) 4 + 5 + 6  2 
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 Marks 

 

Question 4                        (12 marks) Use a SEPARATE writing booklet. 

 

a) 78 is a tangent to the circle centre 9. Let ∠7�� = 4  

 

 

 

 i) Find ∠79� with reasons 1 

 ii) Find ∠97� with reasons 1 

 iii) Show that ∠�78 = ∠��7 1 

    

b) i) Find 
'
'� �� sin-.

�
4 � ;16 � � � 3 

 ii) Hence, evaluate $ sin-. �4 '�
&



 2 

     

c) Use the process of mathematical indunction to show that for all < � 1,  4 

 1 � 15 � 65�	. . . . . . . . . . . �	�4<� � 6< � 4< � 1� ) <&		  
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 Marks 

 

Question 5                        (12 marks) Use a SEPARATE writing booklet. 

 

a) The diagram below shows a container in the shape of a right circular cone.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The semi-vertical angle > = tan-. 12   

 

Water is poured in at the constant rate of 15	cm� per minute. 

Let the height of the water at time 0 seconds be ℎ	cm, let the radius of the 

water surface be B	cm, and let the volume of water be C	cm�. 

 

 i) Show that B = 1
2ℎ 1 

 ii) Show that C = 1
12�ℎ� 1 

 
iii) 

 

Find the exact rate at which ℎ is increasing when the height of the 

water in the cone is 35	cm. Leave your answer in exact value. 

2 

 

    

b) The point �(2�D, �D ) and E(2�F, �F ) lie on the parabola � = 4�1.  

 

i) 

 

 

Show that the coordinates of the mid-point G, of the chord �E are 

H�(D + F), �2 (D + F )I 
1 

 

 

    

 
ii) 

 

If the chord �E is a focal chord. Find the equation of the locus of G and describe the locus of G geometrically. 

3 

 

    

J 

K L 



Mathematics Extension 1 HSC Trial Exam: Student’s number: …………………………..….………7 

 

Question 5 Continued  

c) 

 

 

 

An ice cube tray is filled with water at a temperature of 22℃ and placed in 

a freezer that has a constant temperature of −21℃. The cooling rate of the 

water is proportional to the difference between the temperature of the 

freezer and the temperature of the water, N. 

 

 

That is, N satisfies the equations 

 'N
'0 = −O(N + 21)														&											N = −21 + �/-QR  

 i) Show that � = 43 1 

 
ii) 

 

After 8 minutes in the freezer the temperature of the water is 2℃. 

Find the time to the nearest minute for the water to reach −20.9℃.  

3 
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 Marks 

 

Question 6                        (12 marks) Use a SEPARATE writing booklet. 

 

a) 

 

A particle is oscillating in simple harmonic motion such that its 

displacement � metres from the origin is given by the equation 
 

 
' �
'0 = −25�  

 where 0 is time in seconds.  

 
i) 

 

Show that � = � cos(50 + 4) is a solution of motion for this 

partciple. (� and 4 are constants) 

1 

 

 
ii) 

 

When 0 = 0, T = 5 m/s and � = 6 m. Show that the amplitude of 

the oscillation is √37. 

2 

 

 iii) What is the maximum speed of the particle? 1 

    

b) 

 

A particle moves along a straight line such that its distance from the origin 

at time 0 in seconds is � metres and its velocity is T. 
 

 i) Prove that 
'
'� !

1
2 T " =

' �
'0  2 

 ii) If the acceleration satisfies 
' �
'0 = −9!� + 81

��" and the particle  3 

  is initially at rest when � = 3,  show that  T = 9W81 − �&
� X  

      

c) Find the area under the curve  1 = 1
√9 − 4�  bounded by the �-axis on 3 

 the domain 0 ≤ � ≤ 3
4 .  
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 Marks 

 

Question 7                        (12 marks) Use a SEPARATE writing booklet. 

 

a) 

 

 

A boy throws a ball and projects it with a speed of C m/s from a point 1 

metre above the ground. The ball lands on top of a flowerpot in a 

neighbour’s yard. 

 

 

 

 
 

 

 
The angle of projection is > as indicated in the diagram. 

The equations of motion of the ball are: 
 

 �Z = 0 and 1Z = −10  

 

where � and 1 are shown on the axes on the diagram. The position of the 

ball 0 seconds after it is thrown by the boy is described by the co-ordinates (�	, 1).  

 It has been found that 1 = C0 sin > − 50 + 1.  

 i) Show that � = C0 cos > 2 

 

ii) 

 

 

 

When the ball is at its maximum height above the ground, it 

passes directly above a 1.5 metre high fence and clears the fence 

by 0.5 metres. 

Find an expression for C in terms of >. 

3 

 

 

 

    

 iii) Find the value of C given that  > = tan-.
9

40
 2 

  Give your answer in m/s, correct to 2 decimal places.  

    

C 

1 m 

� 

1 

NOT TO SCALE 
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Question 7 Continued 
 

 

b) 

 

 

 

Assume that tides rise and fall in Simple Harmonic Motion. A ship needs 

11 metres of water to pass down a channel safely. At low tide, the channel 

is 8 metres deep and at high tide 12 metres deep. Low tide is at 9:00 am and 

high tide is at 3:00 pm. 

5 

 

 

 

 
Find the first time period during which the ship can safely proceed through 

the channel. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-End of Paper- 
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2011 Trials Mathematics Extension 1 Solution 

Q1. 

a) � + 2
� − 4 ≥ 3 
	� + 2
	� − 4
 ≥ 3	� − 4
�     � ≠ 4 
�� − 2� − 8 ≥ 3	�� − 8� + 16
 
�� − 2� − 8 − 3�� + 24� − 48 ≥ 0 
−2�� + 22� − 56 ≥ 0 
�� − 11� + 28 ≤ 0 
	� − 4
	� − 7
 ≤ 0 
∴ 4 < � ≤ 7 

 

b) 

lim�→�
10�

sin ��6 � = 10�6
= 60

�  

 

c) 

"	4, 3
 and $	−2, 5
 

divides externally – & ∶ ( or & ∶ −( 
−1 ∶ 3 or 1 ∶ −3 

� = −2 × 	−1
 + 4 × 3
−1 + 3  

� = 7 

* = 5 × 	−1
 + 3 × 3
−1 + 3  

* = 2 
∴ +	7, 2
 

 

d) 

Let +	�
 = 3�, + 20�� + - 

If +	�
 is divisible by � + 6 

+	−6
 = 3	−6
, + 20 × 	−6
� + - = 0 

∴ - = −72 

 

 

 

e) 

.� − 1
2/0 

= �0 + 7�1 × .− 1
2/ + 21�2 × .− 1

2/� 
+35�3 × .− 1

2/, + 35�, × .− 1
2/3 

+21�� × .− 1
2/2 + 7� × .− 1

2/1 
+ .− 1

2/0 
= �0 − 7

2 �1 + 21
4 �2 − 35

8 �3 + 35
16 �, 

− 21
32 �� + 7

64 � − 1
128 

 

f) 

4 = 7 − 2�,       54 = −6��5� 

6 ��	7 − 2�,
35�  
= − 1

6 6 −6��	7 − 2�,
35� 

= − 1
6 6 4354 

= − 1
6 742

5 8 + 9 
= − 	7 − 2�,
2

30 + 9 
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Q2. 

a) i) 

:	�
 = 3 cos=> �
2 

Domain: −2 ≤ � ≤ 2 

Range: 0 ≤ * ≤ 3� 

ii) 

 

 

b) 

5
5� 	?3� cos 3�
 
= 4?3� × cos 3� − ?3� × 3 sin 3� 
= ?3�	4 cos 3� − 3 sin 3�
 

 

c) i)  
� = 6@, @ = �

6 
* = 3@� = 3 × ��

6 � 
* = ��

12 
�� = 12* 

ii)  

5*
5� = 2�

12 = 12@
12 = @ 

5*
5� = −2       	@ = −2
 

 

iii)  
&A = −2,    &B = 1

2 

@ = −2,   � = −12,   * = 12 

* − 12 = 1
2 	� + 12
 

2* − 24 = � + 12 
� − 2* + 36 = 0   (Equation of Normal) 

 

d) 

* = 3� − 2      5*
5� = &> = 3 

* = �, − 4      5*
5� = 3��      

-@ � = 2           5*
5� = &� = 12 

tan E = F &> − &�1 + &>&�F 
tan E = F 3 − 12

1 + 3 × 12F 
tan E = 9

37 
E = 13°40′   (nearest minute) 
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Q3. 

a) 

�* = 2,    � = 2
* 

6 �J
>

5* = 6 2
* 5*J

>
 

= 2Kln *L>J 
= 2	ln 8 − ln 1
 
= 4.159 (4 sig fig) 

 

b) i) (remember to calculate in radian) 

:	�
 = sin � − ln � 
:	2
 = sin 2 − ln 2 = 0.216 … 
:	2.5
 = sin 2.5 − ln 2.5 = −0.317 … 

Since there is a sign change between :	2
 

and :	2.5
, and the function is continuous 

between these two points, therefore 

there is a root lies between 2 and 2.5. 

ii) 

�> = �� − :	��

:O	��
 

�> = 2 − :	2

:O	2
 

:O	�
 = cos � − 1
� 

:O	2
 = cos 2 − 1
2 

�> = 2 − sin 2 − ln 2
cos 2 − 12

 
�> = 2.236 (3 d.p.) 

 

c) SUBSTITUTION 

2 S’s, 2 U’s, 3 T’s, 2 I’s 

12!
2! 2! 3! 2! = 9979200 

 

 

d)  
i) 3�, + 5�� − 4� − 2 = 0 
Q + R + S = − 5

3 

ii) 

1
Q + 1

R + 1
S = QR + RS + QS

QRS  

= − 4323
= −2 

iii) 

Q� + R� + S� 
= 	Q + R + S
� − 2	QR + RS + SQ
 
= .− 5

3/� − 2 .− 4
3/ 

= 49
9  
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Q4. 

a) i) ∠9U$ = 2Q (angle at the centre is 

twice the angle at the circumference) 

ii) ∠U9$ = 	>J�=�V

� = 90 − Q 

(angle sum of a triangle) 

iii) ∠U9W = 90° (radius meets tangent) 

∠$9W = 90° − ∠U9$ = 90° − 	90° − Q
 
∴ ∠$9W = Q = ∠$"9 

 

b) i) 

5
5� �� sin=> �

4 + X16 − ��  
= �

√16 − �� + sin=> ��
4  

+ 1
2 	16 − ��
=>� × 	−2�
 

= �
√16 − �� + sin=> ��

4 − �
√16 − �� 

= sin=> ��
4  

ii) 

6 sin=> ��
4 3

�
 

= Z� sin=> �
4 + X16 − ��[�

3 
= \4 sin=> 1 + √16 − 16] − \0 + √16] 
= 2� − 4 

 

 

 

 

 

 

 

 

c)  
Step1: Prove statement is true for ( = 1 

^_` = 	4 × 1, − 6 × 1� + 4 × 1 − 1

= 1 

a_` = 13 = 1 
^_` = a_` 

∴ Statement is true for ( = 1 

Step2: Assume statement is true for ( = b 

1 + 15 + 65+ . . . . . . + 	4b, − 6b� + 4b
− 1
 

= b3 

 

Step3: Prove statement is true for 

( = b + 1 

1 + 15 + 65+ . . . . . . + 	4b, − 6b� + 4b
− 1
 

+	4	b + 1
, − 6	b + 1
� + 4	b + 1

− 1
 

= 	b + 1
3 
^_` = b3 + 	4	b + 1
, − 6	b + 1
�

+ 4	b + 1
 − 1
 
^_` = b3 + 4b, + 12b� + 12b + 4 
−6b� − 12b − 6 + 4b + 4 − 1 
^_` = b3 + 4b, + 6b� + 4b + 1 
^_` = 	b + 1
3 
^_` = a_` 

∴ Statement is true for all ( ≥ 1 by 

mathematical induction. 
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Q5. 

a) i) 

 

 

 

tan E = c
d 

1
2 = c

d 
c = 1

2 d 

ii) 
e = 1

3 �c�d 
e = 1

3 � × .1
2 d/� × d 

e = 1
12 �d, 

iii) 

5e
5@ = 15 cm,/min 

5d
5@ = 5d

5e × 5e
5@  

5e
5d = �d�

4        5d
5e = 4

�d� 

5d
5@ = 4

�d� × 15 

When d = 35 cm 

5d
5@ = 4

� × 35� × 15 
5d
5@ = 12

245�   cm/min 

 

 

 

 

 

b) i) +	2-g, -g�
 and h	2-i, -i�
 
j = k2-g + 2-i

2   ,   -g� + -i�
2 l 

j = k-	g + i
  ,   -2 	g� + i�
l 

ii) +h is a focal chord, so gi = −1 
� = -	g + i
 
g + i = �

- 
* =  -

2 	g� + i�
 
* = -

2 		g + i
� − 2gi
 
* = -

2 .��
- � + 2/ 

* = -
2 k��

-� + 2l 
* = ��

2- + - 
�� = 2-	* − -
 

This is a prabola with vertex 	0, -
 and 

focal length 
>
� - 

 

c) i) @ = 0, m = 22 
22 = −21 + "?� 
" = 43 

ii) @ = 8, m = 2 
2 = −21 + 43?=Jn 
?=Jn = 23

43 
b = − 1

8 ln 23
43 

when m = −20.9 

−20.9 = −21 + 43?=no 
@ = ln 1430−b  
@ = 78 minutes 

E 

d 

c 
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Q6. 

a) i) � = - cos	5@ + Q
 
�p = −5- sin	5@ + Q
 
�q = −25- cos	5@ + Q
 
�q = −25� 
∴ � = - cos	5@ + Q
 is a solution 

ii) Method 1  

when @ = 0, r = 5 

�p = −5- sin	5@ + Q
 
5 = −5- sin	Q
 
- sin Q = −1 ……………………..

○
1  

when @ = 0, � = 6 

6 = - cos	Q
 

- cos Q = 6 ……………………..
○
2  

○
1 � +

○
2 �

 

-� sin� Q + -� cos� Q = 	−1
� + 6� 
-�	sin� Q + cos� Q
 = 37 
-� = 37 
- = √37 

Method 2 

r� = (�	-� − ��
 
25 = 25	-� − 36
 
-� = 37 
- = √37 

iii) Method 1 

Maximum speed occurs when  
sin	5@ + Q
 = 1 
�p = −5- sin	5@ + Q
 
�p = −5 × √37 sin	5@ + Q
 
�p = −5√37 

Speed is always positive 

∴ Maximum speed is 5√37 

Method 2 maximum velocity when � = 0 

r� = 25	37 − 0
 
r = ±5√37 

∴ Maximum speed is 5√37 

 

 

b) i)  5
5r .1

2 r�/ = 1
2 × 2 × r × 5r

5� 
5

5r .1
2 r�/ = r 5r

5� 
5

5r .1
2 r�/ = 5�

5@ × 5r
5� 

5
5r .1

2 r�/ = 5r
5@  

∴ 5
5r .1

2 r�/ = 5��
5@�  

ii)  

5��
5@� = 5

5r .1
2 r�/ = −9 .� + 81

�,/ 
1
2 r� = 6 −9 .� + 81

�,/ 5� 
1
2 r� = − 9��

2 − 729�=�
−2 + 9 

when @ = 0, � = 3, r = 0 

0 = −81 + 81 + 9     → 9 = 0 
r� = −9�� + 729

��  
∴ r� = 9 k81 − �3

�� l 

c) 

" = 6 1
√9 − 4��

,3
�

5� 
Let 4 = 2� 
54 = 25� 
� = 3

4        4 = 3
2 

� = 0        4 = 0 
" = 1

2 6 1
√9 − 4�

,�
�

54 
" = 1

2 Zsin=> 4
3[�

,� 
" = 1

2 ��
6  

" = �
12  units� 
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Q7. 

a) i) 

�q = 0 
�p = 6 0 5@ 
�p = 9 

when @ = 0,  �p = e cos E 
9 = e cos E 
∴ �p = e cos E 
� = 6 e cos E 5@ 
� = e@ cos E + 9 

when @ = 0, � = 0 
9 = 0 
∴ � = e@ cos E 

ii) From the question, the maximum 

height reached by the ball is 2 metres. The 

maximum height occurs when *p = 0 

* = e@ sin E − 5@� + 1 
*p = e sin E − 10@ 
e sin E − 10@ = 0 
@ = e sin E

10  

Height of the ball given by 

* = e@ sin E − 5@� + 1 
2 = e� sin� E

10 − 5e� sin� E
100 + 1 

e� sin� E
20 = 1 

e� = 20
sin� E 

e = √20
sin E       	e > 0
 

 

 

 

 

 

 

iii)  

E = tan=> 9
40 

sin E = 9
41 

 

 

 

e = √20
sin E 

e = 2√5 × 41
9  

e = 20.37 m/s (2 d.p) 

 

  

9 41 

40 

E 
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b) 

 

 

Centre of the motion is 10  

Amplitute is 2 m 

Between 9am to 3pm, there are 6 hours. 

So a full period is 12 hours. 

12 = 2�
(  

( = �
6 

� = −2 cos ��
6 @ + 10 

when � = 11 m 

11 = −2 cos ��
6 @ + 10 

− 1
2 = cos ��

6 @  
�
6 @ = 2�

3   ,   4�
3  

@ = 4 hours  ,   8 hours 

9:00 + 4 hours = 13:00 = 1pm 

9:00 + 8 hours = 17:00 = 5pm 

 
The first time period the ship can safely 

pass through would be between 1pm and 

5pm. 

 

 

 

9am 3pm 


